
Problem Set 6: Hough Line and Circle Accumulators
Computational Perception and Artificial Intelligence

Description:

Now we are going to do some computer vision and perception. The Goal is to have the computer use
parameterization to identify lines and circles as objects. To do this we will engage in the Hough
Accumulator technique. We will write our own implementations of the Hough algorithms. (So no
cheating and using the CV2 built in functions for Hough!). For this problem set you will download a
zipped folder ps06.zip with several preloaded images in the input folder.

Sample Images:

sample1.png : Checkerboard
sample2.png : Noisy Checkerboard
sample3.png : Coins and Vex parts
sample4.png : Hallway
sample5.png : Football Field

You will write one module called ps06.py in the standard class structure. This will be a large section
of code so be certain to use comments and formatting to make the code readable. Work will be
submitted in a zipped folder called ps06.zip and emailed to Mr. Michaud. We will do some work in
class on this as this problem set should present some ‘special’ challenges. Good luck!

Setup:

A. Download and unzip the following folder into your Perception Lastname directory

http://www.nebomusic.net/perception/ps06.zip

B. Open the ps06.py file with IDLE and place your name in the comments as indicated in the code.

C. Note that you have an output folder in the directory. Several questions in this problem set require
you to use the cv2.imwrite(path, array) function save the image data to this folder. Make
sure the file names are correct.

http://www.nebomusic.net/perception/ps06.zip

Part 1: Lines

1. Import sample1.png as img1. Make a grayscale copy if img1 and name it img1_g.

2. Use the cv2.Canny() function and create an edge image from img1_g called img1_edge. Save
img1_edge in your output folder as img1_edge.png.

3. Write a Hough Accumulator Array function that returns H, a Hough array containing the votes for a
parameterized line.

def houghLineAccumulator(E): # E is edge image

return H

Algorithm: Build Hough Array

Given: Edge image E

-Compute d = 2 ∗ �(𝐸𝐸 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡)2 + (𝐸𝐸 𝑤𝑤𝑒𝑒𝑤𝑤𝑡𝑡ℎ)2
-Initialize H(d, 181) = 0
-For each edge point in E(x,y)

-for theta = -90 to 90 degrees
 d = x*cos(theta) + y*sin(theta)

 H(d, theta) += 1

-Return H

4. Use the houghLineAccumulator() function from Question 2 and create a Hough array H from
img1_edge. Create a normalized image H_out from H and save it as H_out.png in the output
folder. Note the sample code below to normalize and save:

5. Write a function getHoughVectors(H) that returns a List of vectors [d, theta] from the Hough
Array H. You will need to choose a method to threshold H. Try starting with the max of H and work
down in value until you get a reasonable number of vectors in return.

def getHoughVectors(H):

return V # List of vectors [d, theta]

6. Use the getHoughVectors(H) function to return a list of vectors from the H from step 3. Using
this vector data, use cv2.rectangle() and draw white rectangles on the points identified by the
vectors. A sample image is shown below.

7. Write a function called drawLines(img, vectors) that takes an input of vectors (d, theta) and
draws the corresponding lines on the image img. Remember that the vectors indicate lines that are 90
degrees (pi/2 Radians) turned from the actual line. You will need to account for this turn when you
draw the lines.

Once you get the point of the line and the angle, choose a distance that will extend beyond the edge of
the image. You can use vectors to compute two off image points from the original point and adjusted
theta. Once you have two points, use the cv2.line() function to draw the line.

def drawLines(img, vectors):

return img # With lines added

8. Use the drawLines() function from 7 and the getHoughVectors() function and draw the
lines onto img1. Save this image with lines as img1_lines.png in the output folder. It should
look something like: (Green Lines at 3 pixel width)

9. Now that we have a Hough Lines system of functions, let us try it on a noisy image. Import
sample2.png as img2. Make a grayscale copy and call it img2_g.

10. Before we make an edge image, we are going to use a Gaussian filter to smooth out the noise. Use
the cv2.GaussianBlur() function and add some Gaussian noise to img2_g and call the new array
img2_noise. You will need to experiment with the filter size (n x n) and the sigma to get a blur that
works. Same img2_noise in the output folder as img2_noise.png.

11. Make an edge image img2_edge from img2_noise with the cv2.Canny() function.

12. Let's find some lines! Use the houghLineAccumulator(), getHoughVectors() and
drawLines() functions to find and draw the lines on the blurry img2. Save this image as
img2_lines.png in the output folder.

13. Now we will try line finding with some real world images. Import sample3.png as img3.
Produce a line image from img3 using the steps of:

-Make GrayScale Image
-Blur Image with Gaussian Filter
-Run the Hough Accumulator

Work to identify lines that outline the long edges of the VEX pieces. Again, tweak the size of the
Gaussian Filter, Sigma, and number of lines captured. Save the result as img3_lines.png in the
output folder.

14. Repeat the process for sample4.png. Find work to find the lines in the hallway that intersect at
the vanishing point. Save the result as img4_lines.png.

Part 2: Circles

15. We will now write a Hough Accumulator for Circles. We will take an input of an edge image E and a
radius r to search for circles of a given radius. (This shortens the length of time for a search by
concentrating on a single radius).

Algorithm: Hough Circle Accumulator

Given: Edge image E, Radius r

-Initialize array H(height, width) if E with zeros
-For every edge pixel (x,y) in E:

-For theta 0 to 359
a = x + r*cos(theta)
b = y + r*sin(theta)

 H(b, a) += 1

-Return H

Write a function houghCircleAccumulator(E, r) that takes inputs of edge image E and radius r
and returns a Hough array H with the votes

def houghCircleAccumulator(E, r):

return H

16. Write a function getHoughCircles(H, r). This function should return a List of tuples (y, x, r)
with x and y being the center of the circle and r being the radius based on voting. Again, you will need
to experiment with a threshold to get an appropriate number of votes. This will be very similar in
structure to the getHoughVectors() function you wrote for question 5.

def getHoughCircles(H, r):

return C #List of tuples (y, x, r)

17. Write a function drawCircles(img, C) that takes an input of C (a list of tuples (y, x, r)) and
draws a circle for each tuple in C on image I.

def drawCircles(img, C):

return img

18. Almost there! Load sample3.png into the array img3. Use Gaussian blurring and the Canny
tools to create an edge image img3_edge.

19. Use the houghCircleAccumulator(), getHoughCircles(), and drawCircles()
functions to identify the quarters in the sample3.png. You will need to experiment with the radius and
thresholding to get the circles. Save the image with the circles identified as img3_quarters.png in the
output folder.

20. Extra Credit 1: Use the houghCircleAccumulator(), getHoughCircles(), and
drawCircles() and identify the nickels and dimes in sample3.png. Save the result as
img3_coins.png in the output folder. (Hint - a great final project idea would be a way to have a
computer vision program 'count' money in coins using Hough Accumulators)

21. Extra Credit 2: Import sample5.png as img5. Tinker with the Hough Lines functions you write
until the program only identifies the yard-lines of the football field. (Hint - try identifying and not
drawing lines with thetas of 90 (or 0 depending on how you are handling lines) degrees). Save the result
as img5_yardlines.png in the output folder.

Good Luck!

