Searching Algorithms

Computational Perception and Artificial Intelligence
Marist School

Graph Theory and Definition

e A Graph G consists of Vertices V and
Edges E

e Written G = (V, E)

* Vertices are “Points” on the Graph
e Edges connect two Vertices

e Edges can have a “weight”

e Types of Graphs:
e Cycles
* Trees

e Cyclical

Directed

Goal: Given a Weighted non directed Graph G . ..

e Given a start and end vertex on a graph, find the
shortest path between start and end in graph G.

e Use three types of Searches
* Breadth First Search

 Uniform Cost Search
e A* Search

e Compare searches and identify strengths for each

Sample Map Romanla What is shortest path

between Arad and
Bucharest?

Arad [

92
Sibiu g Fagaras
118

L} Vaslui

Rimnicu Vilcea

Hirsova
L] Mehadia Urziceni
75 86
Bucharest
Dobreta [90
Craiova Etorle

] Giurgiu

Artificial Intelligence, A Modern Approach. Pg 68

Breadth First Search

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node «— a node with STATE = problemn .INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier < a FIFO queue with node as the only element
explored < an empty set
loop do
if EMPTY?(frontier) then return failure
node «— POP(frontier) /* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem., node, action)
if child .STATE is not in explored or frontier then
if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier < INSERT(child, frontier)

Arad []

118

] Mehadia
75

Dobreta [J

[] Hirsova

Eforie|

Figure 3.11 Breadth-first search on a graph.

Artificial Intelligence, A Modern Approach. Pg 82

Uniform Cost Search

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node «— a node with STATE = problem.INITIAL-STATE, PATH-COST =0
frontier — a priority queue ordered by PATH-COST, with node as the only element
explored — an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) [* chooses the lowest-cost node in frontier */
if problem.GOAL-TEST(node.STATE) then return SOLUTION(n.ode)
add node.STATE to exzplored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem, node, action)
if child .STATE is not in explored or frontier then
frontier «— INSERT(child, frontier)
else if child.STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Arad []

118

] Mehadia
75

Dobreta [J

[] Hirsova

86

Eforie|

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general
graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition
of an extra check in case a shorter path to a frontier state is discovered. The data structure for
frontier needs to support efficient membership testing, so it should combine the capabilities
of a priority queue and a hash table.

Artificial Intelligence, A Modern Approach. Pg 84

A* Heuristic Search

3.5.2 A* search: Minimizing the total estimated solution cost

The most widely known form of best-first search is called A" search (pronounced “A-star
search”). It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the cost
to get from the node to the goal:

f(n)=g(n)+ h(n).
Since g(n) gives the path cost from the start node to node n, and h(n) is the estimated cost
of the cheapest path from n to the goal, we have

f(n) = estimated cost of the cheapest solution through 7 .

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the
node with the lowest value of g(n) + h(n). It turns out that this strategy is more than just
reasonable: provided that the heuristic function A(n) satisfies certain conditions, A" search is
both complete and optimal. The algorithm is identical to UNIFORM-COST-SEARCH except
that A" uses g + h instead of g.

Artificial Intelligence, A Modern Approach. Pg 93

Problem Set 07

e Download and Extract PSO7 from this link:
e http://www.nebomusic.net/perception/ps07.zip

 Complete the Functions for Breadth First Search, Uniform Cost
Search, and A*Search

* Helper functions included in the util.py file. Read and understand the
roles of the helper functions.

* Visualization Functions are also included to view maps and paths.
e Random City Function included to generate random maps.

e Use the .pdf from Chapter 3 of Artificial Intelligence to help with
algorithms and understanding of search. (Included in ps07 file)

http://www.nebomusic.net/perception/ps07.zip

Requirements: PSO/

e Complete the Breadth First, Uniform Cost, and A* Search Functions. Run on
Tests included in ps07.py file.

* Write a short paragraph in a text file called “analysis.txt”. Compare the
three search functions. Which one has the shortest running time and why?

* Create at least one random City and run the three search algorithms.
Generate a map called “random.png” with a sample route. Place this in
the outputs folder.

e Create your own Map using real world examples. Have at least 10 vertices
(cities /ynodes) and have at least 15 Edges with weights.

* Run the three algorithms and generate a map called “mycity.png” in the
output folder with a path.

e Zip ps07 and submit to Google Classroom.

	Searching Algorithms
	Graph Theory and Definition
	Goal: Given a Weighted non directed Graph G . . .
	Sample Map: Romania
	Breadth First Search
	Uniform Cost Search
	A* Heuristic Search
	Problem Set 07
	Requirements: PS07

